APPROACH FOR ESTIMATING COHESION AND ANGLE OF INTERNAL FRICTION USING UNIAXIAL COMPRESSIVE AND TENSILE STRENGTH VALUES OF ROCKS
Keywords:
Cohesion; Tensile strength; Uniaxial compressive strength; Empirical equation; Friction angleAbstract
Rock characteristics, such as failure criteria, play a critical role in the assessment of stability in rock engineering, alongside design factors. Stability in rock engineering is cohesion (c) and friction angle (j) are parameters of failure criteria obtained by performing direct shear test or triaxial test. However, the measurements require a certain number of intact rock samples. On the restricted condition or preliminary study, an approach involves for predicting both parameters. Using data statistical analysis of Uniaxial Compressive Strength (sc) and Brazilian Tensile Strength (st) of limestone and gypsum, empirical equations to predict c dan j were resulted in this research. Cohesion is strongly determined by st with average constants in equations: c = 1.81st dan c = 1.84st, for limestone and gypsum. Cohesion of limestone depends on sc with average constant in equation: c = 0.22sc. Friction angle and rock strength ratio (sc/st) are related by exponential equations: c/st = 2.1624e0.0314j dan sc/st = 3.6936e0.0183j, for limestone and gypsum, respectively. This approach using constructed empirical equations provides the prediction of c and j that relevant with theoretical values, indicated by 2.8% and 8.22% relative deviations. These empirical equations are useful for predicting the values of c and j.
Downloads
References
Schartzkopffa A, Sainokib A, Bruningd T, Karakuse M, Schartzkopffa A. A conceptual three-dimensional frictional model to predict the effect of the intermediate principal stress based on the Mohr-Coulomb and Hoek-Brown. International Journal of Rock Mechanics and Mining Sciences. 2023;172.
Tian, D. and Zheng, H. The generalized Mohr-Coulomb failure criterion. Applied Sciences, 13(9), p.5405. 2023.
Shi J, Yu Z, Jiang W, Zhan Z, Xia P. Sensitivity analysis and parameter selection of the modified Mohr–Coulomb model in foundation pit excavation in granite residual soil areas. Discover Applied Sciences. 2024; 6:653.
Li, Y., Gao, X., Yang, J. and Bai, E. Quantitative 3-D investigation of faulting in deep mining using Mohr–Coulomb criterion and slip weakening law. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 11(1), p.10. 2025.
Abbas, N., Li, K., Wang, L., Fissha, Y., Shah, K.S. and Saidani, T.. Evaluating Mohr–Coulomb and Hoek–Brown Strength Criteria for Rock Masses Using Probabilistic Assessment. Geofluids, 2025(1), p.3682700. 2025
Li, H., Pel, L., You, Z., & Smeulders, D. Stress dependent Mohr–Coulomb shear strength parameters for intact rock. Scientific Reports. 2024; 1-16.
MacDonald, N., Day, J., & Diederichs, M. A critical review of laboratory multi-stage direct shear testing for rock fractures. Proceedings of the Geo Niagara, 2021.
Mahdi, D.S. and A Alrazzaq, A.A.A. Rock mechanical properties: A review of experimental tests and prediction approaches. Iraqi Journal of Oil and Gas Research (IJOGR), 3(1), pp.106-115. 2023.
Zou, L. and Cvetkovic, V. A new approach for predicting direct shear tests on rock fractures. International Journal of Rock Mechanics and Mining Sciences, 168, p.105408. 2023.
Hussain, S., Muhammad Khan, N., Emad, M.Z., Naji, A.M., Cao, K., Gao, Q., Ur Rehman, Z., Raza, S., Cui, R., Salman, M. and Alarifi, S.S. An appropriate model for the prediction of rock mass deformation modulus among various artificial intelligence models. Sustainability, 14(22), p.15225. 2022.
Asem, P. and Gardoni, P. Rock hydromechanical parameters for rock foundation design: A database approach. In Databases for Data-Centric Geotechnics (pp. 50-101). CRC Press. 2024.
Mahmoodzadeh, A., Mohammadi, M., Ghafoor Salim, S., Farid Hama Ali, H., Hashim Ibrahim, H., Nariman Abdulhamid, S., Nejati, H.R. and Rashidi, S. Machine learning techniques to predict rock strength parameters. Rock Mechanics and Rock Engineering, 55(3), pp.1721-1741. 2022.
Suleymanov, V., El-Husseiny, A., Glatz, G. and Dvorkin, J. Rock physics and machine learning comparison: elastic properties prediction and scale dependency. Frontiers in Earth Science, 11, p.1095252. 2023.
Ulusay, R., & Hudson, J. SM for Determining the Uniaxial Compressive Strength and Deformability of Rock Materials – 1979. In R. Ulusay, & J. Hudson, The Complete ISRM Suggested Methodsfor Rock Characterization, Testing and Monitoring: 1974-2006. International Society of Rock Mechanics. 2007a.
Ulusay, R., & Hudson, J. SM for Determining the Uniaxial Compressive Strength and Deformability of Rock Materials – 1979. In R. Ulusay, & J. Hudson, The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 1974-2006. International Society of Rock Mechanics. 2007b.
Nazir, R., Momeni, E., JahedArmaghani, D., & Amin, M. Correlation between unconfined compressive strength and indirect tensile strength of limestone rock samples. Electron J Geotech Eng. 2013; 18(1):1737-46.
Heidari, M., Khanlari, G., & Kaveh, M. Predicting the Uniaxial Compressive and Tensile Strengths Predicting the Uniaxial Compressive and Tensile Strengths. Rock Mech Rock Eng. 2011.
Kramadibrata, S., Simangunsong, G., & Wicaksana, Y. Teknik dan Analisis Penggalian Batuan. Bandung: ITB Press. 2023.
Sivakugan, N., Das, B., Lovisa, C., & Patra, C. Determination of c and w of rocks from indirect tensile strength and uniaxial compression tests. International Journal of Geotechnical Engineering, 59-65. 2014.
Dongshuai, T., & Zheng, H. The generalized Mohr-Coulomb failure criterion. Applied Sciences. 13(9):5405.2023
Melati, S. Studi Karakteristik Relasi Parameter Sifat Fisik dan Kuat Tekan Uniaksial Pada Contohh Batulempung, Andesit, Dan Beton. Jurnal Geosapta. Jurnal Geosapta. 5(2):133. 2019.
Chen, W., Khandelwal, M., Murlidhar, B.R., Bui, D.T., Tahir, M.M. and Katebi, J. Assessing cohesion of the rocks proposing a new intelligent technique namely group method of data handling. Engineering with Computers, 36(2), pp.783-793. 2020.
Shahani, N.M., Ullah, B., Shah, K.S., Hassan, F.U., Ali, R., Elkotb, M.A., Ghoneim, M.E. and Tag-Eldin, E.M. Predicting angle of internal friction and cohesion of rocks based on machine learning algorithms. Mathematics, 10(20), p.3875. 2022.
Köken, E., Strzałkowski, P. and Kaźmierczak, U. Estimation of cohesion for intact rock materials using regression and soft computing analyses. In IOP Conference Series: Earth and Environmental Science (Vol. 1295, No. 1, p. 012001). IOP Publishing. 2024.
Zhu, D., Yu, B., Wang, D. and Zhang, Y. Fusion of finite element and machine learning methods to predict rock shear strength parameters. Journal of Geophysics and Engineering, 21(4), pp.1183-1193. 2024.
Published
How to Cite
Issue
Section
Copyright (c) 2025 Sari Melati, Romla Noor Hakim, Santoso Santoso, Muhammad Zaini Arief

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.






