PREDICTION OF SETTLEMENT AND LAND USE CHANGES ON MANSINAM ISLAND FROM 2025 TO 2031 USING THE CELLULAR AUTOMATA SIMULATION METHOD

https://doi.org/10.56139/intan.v8i2.337

Authors

  • Aldi Fariz Valderama Program Studi Teknik Pertambangan, Universitas Papua
  • Yulianto Taplo Universitas
  • Ardi Riansyah Program Studi Teknik Pertambangan, Universitas Papua
  • Syavitra L. P. Habibi Program Studi Teknik Pertambangan, Universitas Papua
  • Adi Frianda Siagian Program Studi Teknik Pertambangan, Universitas Papua
  • Taufik Syahrul Popoi Program Studi Teknik Pertambangan, Universitas Papua
  • Muh. Irwana Segara Nasir Program Studi Teknik Pertambangan, Universitas Papua
  • Amos Iba Program Studi Teknik Pertambangan, Universitas Papua
  • Karmila Laitupa Program Studi Teknik Pertambangan, Universitas Papua

Keywords:

infrastruktur, permukiman, prediksi spasial, sistem informasi geografis, pulau mansinam

Abstract

Indonesia, as an archipelagic country, faces development challenges on its small islands, including Mansinam Island. This study aims to predict settlement and land cover changes on Mansinam Island for the period 2025–2031. The data used were surface reflectance-corrected Sentinel-2 imagery with a spatial resolution of 10 meters. The imagery was acquired in 2019, 2022, and 2025. Land cover classification was performed using a supervised classification method with the minimum distance algorithm, achieving an accuracy of 87.82%. Land change prediction modeling was carried out through land use change analysis and simulation using the Cellular Automata (CA) and Artificial Neural Network-Cellular Automata (ANN-CA) models. The model produced a Percent of Correctness of 89.96%. The simulation results indicate that from 2025 to 2031 there will be no significant land change, with transformed land areas of 43.85 ha in 2025, 42.62 ha in 2028, and 42.64 ha in 2031. The results also show that the development rate on Mansinam Island tends to slow down.

Downloads

Download data is not yet available.

References

. Awaliyan, M. R., Sulistioadi, Y. B. (2018). Klasifikasi Penutupan Lahan pada Citra Satelit Sentinel-2a dengan Metode Tree Algorithm. ULIN Jurnal Hutan Tropis. 2(2). pp 98-104. https://doi.org/10.32522/u-jht.v2i2.1363

. Mandowen, R. G., Mambrasar, R. H. (2021). Sistem Informasi Geografi untuk Analisis Potensi Sumber Daya Lahan Pesisir Kepulauan Padaido Kabupaten Biak Numfor, Papua. Jurnal Teknologi Informasi dan Ilmu Komputer. 8(5). pp 895-906. https://doi.org/ 10.25126/jtiik.202183559

. Septiani, R., Citra, I. P. A., Nugraha, A. S. A. (2019). Perbandingan Metode Supervised Classification dan Unsupervised Classification terhadap Penutup Lahan di Kabupaten Buleleng. Jurnal Geografi. 16(2). pp 90-96. https://doi.org/10.15294/jg.v16i2. 19777

. Abinaya, V., Poonkuntran, S. (2019). Classification of Satellite Image using Minimum Distance Classification Algorithm. SSRG International Journal of Computer Science and Engineering. Special Issue ICTER Mar 2019. pp 15-18.

. Kusniawati, I., Subiyanto, S., Amarrohman, F. J. (2019). Analisis Model Perubahan Penggunaan Lahan Menggunakan Artificial Neural Network Di Kota Salatiga. Jurnal Geodesi Undip. 9(1). pp 1-11. https://doi.org/10.14710/jgundip.2020.26026

. Kumari, S., Roy, A. (2025). Simulation of Land Use and Land Cover Using the MOLUSCE Plugin Integrated with QGIS for the Western Himalayan Region of India. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-5-2024, pp 81–85, https://doi.org/10.5194/isprs-archives-XLVIII -M-5-2024-81-2025

. Buchori I, Sukamto. (2018). Model Proyeksi Perubahan Penggunaan Lahan Kawasan Koridor Jalan Utama Berbasis Cellular Automata dan SIG. Jurnal Pembangunan Wilayah dan Kota. 14(4). pp 307-322. https://doi.org/10.14710/pwk.v14i4.19618

. Maria, E., Budiman, E., Haviluddin, Taruk, M. (2020). Measure Distance Locating Nearest Public Facilities Using Haversine and Euclidean Methods. Journal of Physics: Conference Series. 1450 012080. pp 1-7. https://doi.org/10.1088/1742-6596/1450/1/ 012080

. Ramadan, G. F., Hidayati, I. N. (2022). Prediction and Simulation of Land Use and Land Cover Changes Using Open Source QGIS. A Case Study of Purwokerto, Central Java, Indonesia. Indonesian Journal of Geography. 54(3). pp 344–351. https://doi.org/10.22146/ijg.6870

. Mehra, N., Swain, J. B. (2024). Assessment of Land Use Land Cover Change and its Effects Using Artificial Neural Network-Based Cellular Automation. Journal of Engineering and Applied Science. 71(70). pp 1-17. https://doi.org/10.1186/s44147-024-00402-0

. Kafy, A. A., Naim, M. N. H., Subramanyam G., et al. (2021). Cellular Automata approach in Dynamic Modelling of Land Cover Changes Using Rapideye Images in Dhaka, Bangladesh. Environmental Challenges. 4(2). pp 1-14. https://doi.org/10.1016/j.envc.2021. 100084

Published

2025-11-24

How to Cite

Valderama, A. F., Taplo, Y., Riansyah, A., Habibi, S. L. P., Siagian, A. F., Popoi, T. S., Nasir, M. I. S., Iba, A., & Laitupa, K. (2025). PREDICTION OF SETTLEMENT AND LAND USE CHANGES ON MANSINAM ISLAND FROM 2025 TO 2031 USING THE CELLULAR AUTOMATA SIMULATION METHOD. INTAN Jurnal Penelitian Tambang, 8(2), 81–88. https://doi.org/10.56139/intan.v8i2.337