CORRELATIONS OF PHYSICAL-MECHANICAL PROPERTIES OF THE BOBONARO CLAY IN TIMOR, AND ITS IMPLICATIONS IN GEOTECHNICAL WORK

KORELASI DAN IMPLIKASI GEOTEKNIK TERHADAP SIFAT KUAT GESER LEMPUNG BOBONARO DI TIMOR

https://doi.org/10.56139/intan.v6i1.172

Authors

Keywords:

lempung Bobonaro, kuat geser, sifat fisik tanah, sifat mekanis tanah

Abstract

Many geotechnical problems like slope failures and other infrastructure damage are common in civil and mining projects on the Bobonaro Clay Complex in Timor. Obtaining relevant geotechnical data for a complete engineering analysis is often time-consuming and expensive. Therefore, a study on the relationship between the parameters can be a powerful tool in these situations. Here we used multiple linear regression analysis to determine the correlation between the physical properties (clay content and plasticity index) and mechanical properties (angle of internal friction and cohesion) of the Bobonaro Clay. The data are 53 clay samples from Kupang, East Nusa Tenggara Province. These samples were from geotechnical drilling and Atterberg tests, grain size–hydrometer analysis, and unconsolidated–undrained Triaksial tests. Of all the correlation attempts, we found that only the clay content – plasticity index, and clay content – angle of internal friction exhibited a moderate correlation with a positive trend. The results of the multiple linear regression correlation also failed to express a good model; therefore, it was replaced by simple linear regression analysis. The various factors that need to be considered in a geotechnical correlation study, along with the significance and uniqueness of the Bobonaro clay, are also addressed in this article. 

Downloads

Download data is not yet available.

References

Affandi, D., 2000, Karakteristik Tanah Lempung Ekspansif Bobonaro sebagai Bahan Timbunan di Lokasi Bendungan di Nusa Tenggara Timur. Magister Tesis, Institut Teknologi Bandung.

Ahmed, S.M., 2018. Assessment of clay stiffness and strength parameters using index properties. Journal of Rock Mechanics and Geotechnical Engi-neering, 10(3), pp.579-593.

Akayuli, C., Ofosu, B., Nyako, S.O. and Opuni, K.O., 2013. The influence of observed clay content on shear strength and compressibility of residual sandy soils. International Journal of Engineering Research and Applications. Vol. 3, Issue 4, pp. 2538-2542.

Ardhanihan, Fahrul, Elsa Tri Mukti, dan R. M. Rustamadji. 2022. Korelasi Batas Cair dan Indeks Plastisitas terhadap Nilai Kohesi Tanah Pada Uji Triaksial UU (Unconsolidated-Undrained) Tanah Lempung pada Kabupaten Mempawah." JeLAST: Jurnal PWK, Laut, Sipil, Tambang 9, No. 1.

Audley-Charles, M.G., 1965a. A Miocene gravity slide deposit from eastern Timor. Geological Maga-zine, 102(3), pp.267-276

Audley-Charles, M.G., 1965b. The geology of the Portuguese timor. PhD Thesis, University of London.

Barber, A.J., 2013. The origin of mélanges: Cautionary tales from Indonesia. Journal of Asian Earth Sciences, 76, pp.428-438.

Barber, A.J., Tjokrosapoetro, S. and Charlton, T.R., 1986. Mud volcanoes, shale diapirs, wrench faults, and melanges in accretionary complexes, eastern Indonesia. AAPG bulletin, 70(11), pp.1729-1741.

Bell, F.G. and Maud, R.R., 1994. Dispersive soils: a review from a South African perspective. Quarterly Journal of Engineering Geology and Hydro-geology, 27(3), pp.195-210.

Bowles, J.E., 1997. Foundation analysis and design. Fifth Edition. McGraw-Hill.

Castellanos, B.A. and Brandon, T.L., 2013, September. A comparison between the shear strength measured with direct shear and Triaksial devices on undisturbed and remolded soils. In Proceedings of the 18th international conference on soil mechanics and geotechnical engineering, Paris (Vol. 1, pp. 317-320).

Charalambous, M., Hobbs, P.R.N. and Northmore, K.J., 1986. Supplementary Geotechnical and Mineralogical Data for Cohesive Soil Sampels from Selected Sites Across Cyprus: Engineering Geology of Cohesive Soils Associated with Ophiolites, with Particular References to Cyprus. Rep. EGARP Res. Group Br. Geol. Surv., No. EGARP-KW 86/5; Rep. Geol. Surv. Cyprus, No.G/EG/16.

Charkley, F.N., Zhang, K. and Mei, G., 2019. Shear strength of compacted clays as affected by mineral content and wet-dry cycles. Advances in Civil Engineering, 2019, pp.1-8.

Chen, F.H., 1975. Foundations on expansive soils. (Vol. 12). Elsevier.

Djarwadi, D., Uji Dispersivitas inti kedap air bendungan tipe urugan dengan kandungan mineral lempung montmorillonite dengan Crump Test. Prosiding Konferensi Teknik Sipil, 3, pp.6-7.

Fernandez, G.W., 2007. Kajian Karakteristik Lempung Bobonaro di Provinsi Nusa Tenggara Ti-mur. Puslitbang Jalan dan Jembatan, Bandung.

Frost, J., 2019. Regression analysis: An intuitive guide for using and interpreting linear models. Statisics By Jim Publishing.

Funay, C.M.S., Ernawati, R., dan Bargawa, W.S., 2022. Identifikasi Mineral Liat Pada Lempung Bobonaro di Area Disposal Tambang Mangan. Jurnal Teknologi Mineral FT UNMUL, 10(1).

Hamilton, W., 1979. Tectonics of the Indonesian region. USGS Professional Paper, 1078, 345p.

Harris, R.A., Sawyer, R.K. and Audley‐Charles, M.G., 1998. Collisional melange development: Geologic associations of active melange‐forming processes with exhumed melange facies in the western Banda orogen, Indonesia. Tectonics, 17(3), pp.458-479.

Hattab, M., Hammad, T. and Fleureau, J.M., 2015. Internal friction angle variation in a kaolin/ montmorillonite clay mix and microstructural identification. Géotechnique, 65(1), pp.1-11.

Kluger, M.O., Kreiter, S., Moon, V.G., Orense, R.P., Mills, P.R. and Mörz, T., 2019. Undrained cyclic shear behaviour of weathered tephra. Géotechnique, 69 (6), pp. 489-500.

Laurich, B., Urai, J.L. and Nussbaum, C., 2017. Microstructures and deformation mechanisms in Opalinus Clay: Insights from scaly clay from the Main Fault in the Mont Terri Rock Laboratory (CH). Solid Earth, 8(1), pp.27-44.

Lisboa, J.V.V., Silva, T.P., de Oliveira, D.P.S. and Carvalho, J.F., 2019. Mineralogical and Geochem-ical characteristics of the Bobonaro mélange of western East Timor: provenance implications. Comunicaçõe Geológicas, 106.

Liu, Z., Qiu, H., Jiang, Z., Liu, R., Wei, X., Chen, F., Wei, F., Wang, D., Su, Z. and Yang, Z., 2021. Types and quantitative characterization of microfractures in the continental shale of the Da’anzhai member of the Ziliujing Formation in Northeast Sichuan, China. Minerals, 11(8), p.870.

Masada, T., 2009. Shear strength of clay and silt embankments (No. FHWA / OH – 2009 / 7). Ohio Research Institute for Transportation and the Environment.

Ma'arif, A. dan Gofar, N., 2021, October. Pengaruh Kandungan Lempung Terhadap Sifat Plastisitas Tanah. dalam Bina Darma Conference on Engineering Science (BDCES) (Vol. 3, No. 2, pp. 419-429).

Medzvieckas, J., Dirgėlienė, N. and Skuodis, Š., 2017. Stress-strain states differences in specimens during Triaksial compression and direct shear tests. Procedia Engineering, 172, pp.739-745.

Montgomery, R.L., 1974. Correlation of engineering properties of cohesive soils bordering the Mississippi River from Donaldsonville to Head of Passes, LA. US Army Engineer Waterways Experiment Station, Soils and Pavements La-boratory.

Nurdian, S., Setyanto, S. and Afriani, L., 2015. Korelasi Parameter Kekuatan Geser Tanah dengan Menggunakan Uji Triaksial dan Uji Geser Langsung Pada Tanah Lempung Substitusi Pasir. Jurnal Rekayasa Sipil Dan Disain (JRSDD), 3(1), pp.13-25.

Ramadhani, T., Iswan, I. and Jafri, M., 2015. Hubungan Batas Cair dan Plastisitas Indeks Tanah Lempung yang Disubstitusi Pasir Terhadap Nilai Kohesi Tanah pada Uji Direct Shear. Jurnal Rekayasa Sipil dan Desain, 3(2), pp.291-302.

Rambe, R.P., Afriani, L. and Iswan, I., 2016. Pengaruh Fraksi Lempung Terhadap Nilai Kohesi dan Indeks Plastisitas. Jurnal Rekayasa Sipil dan Desain, 4(2), pp.205-214.

Rosidi, H.M.D., Tjokrosapoetro, S. and Gafoer, S., 1979. Peta Geologi Lembar Kupang-Atambua – Timor (Skala 1:250.000), Pusat Penelitian dan Pengembangan Geologi, Bandung.

Roy, S. and Dass, G., 2014. Statistical models for the prediction of shear strength parameters at Sirsa, India. International Journal of Civil & Structural Engineering, 4(4), pp.483-498.

Saleh, M. 2023. Analisa Stabilitas Lereng Ditinjau dari Aspek Pembasahan- Pengeringan dan Infiltrasi Air Hujan Tanah Lempung Khas Bobonaro. Masters thesis, Institut Teknologi Sepuluh Nopember.

Saleh, M. dan Fitra, A.M., 2022. Studi Karakteristik Tanah Problematik Lempung Bobonaro Pada Jalan Perbatasan RI-RDTL Sektor Timur, Provinsi Nusa Tenggara Timur. Prosiding KRTJ-HPJI, pp.19-25.

Salih, A.G., 2012. Review on granitic residual soils’ geotechnical properties. Electronic Journal of Geo-technical Engineering, 17(3), pp.2645-2658.

Sorensen, K.K. and Okkels, N., 2013, September. Correlation between drained shear strength and plasticity index of undisturbed overconsolidated clays. In Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris (Vol. 1, pp. 423-428).

Štuhec, D., Ivandić, K., Strelec, S. and Dodigović, F., 2019. The analysis of some cohesive soils engi-neering characteristics in Croatia. In Proceedings of the XVII European Conference on Soil Mechanics and geotechnical Engineering (ECSMGE-2019). Harpa Conference Centre, Iceland (pp. 1-5).

Tchakalova, B. and Ivanov, P., 2021. Correlation between effective cohesion and plasticity index of clay. Geolodica Balcanica 51(3), pp. 45-49.

Terzaghi, K., Peck, R.B. and Mesri, G., 1996. Soil mechanics in engineering practice. John wiley & sons.

Tiwari, B. and Marui, H., 2005. A new method for the correlation of residual shear strength of the soil with mineralogical composition.Journal of Geotechnical and Geoenvironmental Engineering, 131 (9), pp. 1139 - 1150.

Verdiyanti, N.E., Mukti, E.T. and Rustamaji, R.M., 2022. Hubungan Batas Cair Dan Indeks Plastisitas Terhadap Nilai Kohesi Tanah Pada Uji Direct Shear Tanah Lempung Pada Kabupaten Mempawah. Je- LAST: Jurnal PWK, Laut, Sipil, Tambang, 9(1).

Vong, E.A., 2016. Studi Efek Pengembangan Terhadap Kuat Geser Dan Perubahan Volume Tanah Lempung Bobonaro. Jurnal Rekayasa Infra-struktur, 1(4), Pp.190201.

Wang, S., Chan, D. and Lam, K.C., 2009. Experimental study of the effect of fines content on dynamic compaction grouting in completely decomposed granite of Hong Kong. Construction and Building Materials, 23(3), pp.1249-1264.

Wibisono, G., Nugroho, S.A. and Umam, K., 2018, March. The influence of sand’s gradation and clay content of direct sheart test on clayey sand. In IOP Conference Series: Materials Science and Engineering (Vol. 316, No. 1, p. 012038). IOP Publishing.

Yassir, N.A., 1987. Mud Volcanoes and the Behaviour of Overpressured Clays and Silts. Ph.D. Thesis, University of London.

Yin, J.H., 1999. Properties and behaviour of Hong Kong marine deposits with different clay contents. Canadian Geotechnical Journal, 36(6), pp.1085-1095.

Published

2023-05-29

How to Cite

Titu-Eki, A., & Dethan, N. K. F. . (2023). CORRELATIONS OF PHYSICAL-MECHANICAL PROPERTIES OF THE BOBONARO CLAY IN TIMOR, AND ITS IMPLICATIONS IN GEOTECHNICAL WORK: KORELASI DAN IMPLIKASI GEOTEKNIK TERHADAP SIFAT KUAT GESER LEMPUNG BOBONARO DI TIMOR . INTAN Jurnal Penelitian Tambang, 6(1), 1–11. https://doi.org/10.56139/intan.v6i1.172